1.硬质合金材料具有什么主要特性?

2.如何防止金属装饰品表面的氧化?

3.1000字论文,关于废电池回收及处理的

4.花生剥壳机的主要去壳原理和CAD图

硬质合金材料具有什么主要特性?

340粉末冶金价格_粉末冶金价格怎么算

硬度高(86~93HRA,相当于69~81HRC);

热硬性好(可达900~1000℃,保持60HRC);

耐磨性好。

硬质合金刀具比高速钢切削速度高4~7倍,刀具寿命高5~80倍。制造模具、量具,寿命比合金工具钢高 20~150倍。可切削50HRC左右的硬质材料。

但硬质合金脆性大,不能进行切削加工,难以制成形状复杂的整体刀具,因而常制成不同形状的刀片,采用焊接、粘接、机械夹持等方法安装在刀体或模具体上使用。

扩展资料:

WC-Co类硬质合金具有以下性能特点:

1、很高的硬度和耐磨性。一般在HRA86~93之间,并随含钴量的增加而降低。

2、常温时的抗弯强度在90~150MPa 之间,并且含钴量越高抗弯强度越高。

3、较稳定的化学性能。能耐酸、耐碱,甚至在高温下也不发生明显氧化。

4、高的导热率。比高速钢约高1倍, 随含钴量的增加而增加。

5、热膨胀系数比较小。低于高速钢、碳素钢和铜,并随含钴量的增加而增加。

6、抗压强度为340~560kg/mm2,热等静压的硬质合金制品抗压强度达600 kg/mm2,而淬火合金工具钢仅有250~ 260kg/mm2。

7、高的耐磨性。比最好的高速钢要高15~20倍。

百度百科-硬质合金

如何防止金属装饰品表面的氧化?

这些都是抗氧化保护膜类

Sr对原位反应自生Mg2Si/ZM5复合材料

通过真空感应炉中氩气保护,在ZM5熔体中加入Si获得原位反应自生Mg2Si/ZM5复合材料。采用OM、ESEM、XRD等探讨了Sr对这种复合材料的组织与性能的影响规律。

AXfa0002 SiCw/LD2Al复合材料超塑变形协调机制的研究

SiCw/LD2Al复合材料具备高比强度、高比刚度、耐磨、耐热、热膨胀系数小并可调等一系列优异性能而在航空、航天领域得到了广泛的应用,但是差的机械加工性能限制了它的进一步发展。为了解决这一问题,提出了近终形成型技术,高应变速率超塑性是近终形的关键。金属基复合材料的高应变速率拉伸超塑性已经进行了很深入的研究,但是对于压缩变形,尤其是SiCw/LD2Al复合材料的压缩变形机制研究的很少。本文主要从SiCw/LD2Al复合材料界面应力集中的角度研究超塑变形的协调机制。

AXfa0003 TiCp/W复合材料热冲击损伤行为的数值模拟

为了揭示Tic颗粒增强的钨基复合材料(TiCp/W)高温下的失效规律,采用有限元方法从宏观和微观两个方面对该复合材料在氧乙炔热冲击中的损伤行为进行了数值模拟。复合材料非稳态温度场的模拟结果、材料的宏观与微观损伤行为的模拟结果都与实验结果吻合。

AXfa0004 Ti-Al-B合金中铝含量对硼化物的存在方式和形态的影响

用熔铸法制备了硼化物颗粒增强钛基复合材料,通过XRD和SEM,详细研究了含铝量变化时合金的相组成及硼化物的形态和存在方式的变化规律。

AXfa0005 SiCw/MB15镁基复合材料超塑性变形空洞行为

用金相显微镜、扫描电镜对SiCw/MB15镁基复合材料在340℃,应变速率为1.67×10-2s-1变形条件超塑性变形过程中空洞的行为进行了研究。结果表明空洞最先在三叉晶界处形成,空洞的长大在变形初期由扩散控制,变形后期由基体塑性变形控制。

AXfa0006 原位TiB晶须和TiC颗粒复合增强Ti复合材料的压缩性能及微观结构

采用反应热压方法制备了原位TiB晶须和TiC颗粒复合增强钛复合材料,对复合材料进行了高温压缩试验,对变形前后的微观结构进行了分析。

AXfa0007 时效对SiCw/2024Al复合材料点腐蚀行为的影响

利用273恒电位仪测试了在室温下3.5%NaCl溶液中时效状态对SiCw/2024Al复合材料电化学腐蚀行为的影响规律。结果表明,不同的时效状态对复合材料的点蚀电位没有影响,但却使其点蚀电流发生较大的变化。三种时效状态下复合材料表面点腐蚀程度的不同,是由于复合材料微观组织结构的差别导致点腐蚀速率不同造成的。

AXfa0008 激光熔敷Ti5Si3/γ耐磨复合材料涂层组织与耐磨性

以Ti-Si-Ni合金粉末为原料对BT9钛合金进行激光熔敷处理,制备出以金属化合物Ti5Si3为增强相、以镍基固溶体γ相为基体的快速凝固"原位"耐磨复合材料表面改性层,整个改性层组织均匀、致密、与基体结合良好,具有很高的硬度及较好的抗滑动磨损性能。

AXfa0009 金属基复合材料的自发浸渗制备工艺

一般而言,金属基复合材料中增(补)强相与基体相的复合需要借助外力,如粉末冶金中烧结前粉体的两组分机械混合,以及压力铸造中熔体在外压驱使下进入多孔颗粒预制件。提供这类外力通常需要复杂工艺条件下的昂贵设备,制品在尺寸和形状上又有诸多限制。寻求经济简便的复合材料制备方法一直是一项极具挑战性的任务。

熔体自发浸渗颗粒预制件是一项前景看好的尝试。自发浸渗就是熔体在无外力作用下,借助浸润导致的毛细管压力自发进入颗粒多孔预制件。用传统成型工艺,陶瓷粉末可预制成所需要的形状和尺寸,金属性熔体自发渗入并充满预制件中的空隙,冷却凝固后获得颗粒在连续基体中均匀分布的复合材料。若组分间匹配得当、复合良好,可期望复合材料具有理想的力学性能。

AXfa0010 铜/钢复合材料的研究及应用

为了使金属材料最大限度地发挥出其所具有的性能,其方法之一就是把性能不同的材料加以组合制成复合材料。钢/钢复合材料(钢表面复铜或铜合金)由于具有防腐蚀、抗磨损、导电导热性能优良、美观、成本低等优点,在军工、电子、造币、炊具及建筑装饰等领域有着广阔的应用前景,其研究也越来越引起国内外的关注。本文主要介绍了铜/钢复合材料的应用、生产方法的新进展。

AXfa0011 喷射沉积成形颗粒增强金属基复合材料制备技术的发展

分析了喷射沉积成形颗粒增强金属基复合材料制备技术的研究现状。系统地介绍了原位反应喷射沉积成形过程中进行的各类反应。在总结国内外喷射沉积成形颗粒增强金属基复合材料制备技术优缺点的基础上,发展了溶铸-原位反应喷射沉积成形金属基复合材料制备新技术。

AXfa0012 铝基复合材料的腐蚀控制研究进展

铝金属基复合材料(MMCs)具有比强度和比刚度高,耐磨蚀等优点,被视为在航空航天及汽车工业等领域中最有前途的新型结构材料之一。多年来,国内外均致力于铝MMCs的制备和提高机械性能的研究。相对而言,对该材料腐蚀性能特别是腐蚀控制的研究则少得多。这显然与铝MMCs应用日益增长的现状不适应,研究铝MMCs的腐蚀及腐蚀控制问题已成为材料科学中的一个重要的课题。

AXfa0014 电子封装材料的研究现状

电子及封 装技术的快速发展对 封装材料的性能提出了更为严格的要求。综述了种新型封装材料的发展现状;并以金属基复合材料为重点,分别从增强体,基体材料,制备工气及微结构几个方面讨论了它们对材料热性能的影响;据此进一步提出了改善封装材料热性能的途径及未来的发展方向。

AXfa0015 内部因素对金属基复合材料磨损性能的影响

综述和分析了金属基复合材料内部因素对磨损性能的影响。这些因素包括增强体种类、大小、形状和取向、体积人数。分析表明,上述因素通过影响复合材料的磨损机制而影响磨损性能。金属基复合材料在各种条件下表现的磨损机制的多样性是造成其磨损性能不稳定的原因。

AXfa0016 金属层状复合材料的超塑变形行为

通过热压合和轧制的方法研制了金属多层复合材料,对复合材料的超塑性变形行为进行了研究,发现在一定的变形条件下,高塑性材料对低塑性材料存在"牵动效应"。并对复合和各组元的流变应力、应变速率敏感性指数m进行了理论推导和实验研究。

和单一合金相比金属复合材料有许多优点,一方面它可以很好地增强材料功能,另一方面它具有优良 的性能价格比,因而具有强劲的市场竞争能力,在许多工业领域里获得了广泛的应用。本课题在双层复合材料的基础上研制了多层金属复合材料,后者除了具有双层复合材料的优点之外,还有其自身的特点,即组元之间存在界面层,扩散良好的界面层的性能介于两组元之间,在超塑变形时高塑性组元对低塑性组元产生带动作用,使复合材料获得较好的整体超塑性。

AXfa0017 外部因素对金属基复合材料磨损性能的影响

综述和分析了正载荷、滑动速度、滑动距离、环境温度等外部因素对金属基复合材料磨损性能的影响。与复合材料内部影响因素类似,外部因素通过影响复合材料磨损机制而影响复合材料磨损率。

AXfa0018 颗粒增强铝基复合材料的研制、应用与发展

颗粒增强铝基复合材料(如SiCp/Al)具有高比强度和比刚度、耐磨、耐疲劳、低热膨胀系数、低密度、高微屈服强度、良好的尺寸稳定性和导热性等优异的力学性能和物理性能,可广泛应用于航天、军事、汽车、电子、体育运动等领域。因此,从上世纪80年代初开始,世界各国竞相研究开发这类材料,从材料的制备工艺、微观组织、力学性能与断裂特性等角度进行了许多基础性研究工作,取得了显著成绩。目前,各国相继进入了颗粒增强铝基复合材料的应用开发阶段,在美国和欧洲发达国家,该类复合材料的工业应用已开始,并且被列为21世纪新材料应用开发的重要方向。

本文通过介绍和分析国外颗粒增强铝基复合材料的研制、应用和发展趋势,并在分析国内该材料现状的基础上,根据"十五"期间国内需求,探讨和分析我国颗粒增强铝基复合材料的发展对策,期待提出的建议和对策对于提高国内颗粒增强铝基复合材料的应用发展有所贡献。

AXfa0019 金属层状复合材料的研究状况与展望

回顾了金属层状复合材料在工艺、机制方面的研究现状,分析了存在的问题,并对今后的研究进行了展望。

随着科学技术突飞猛进的发展,社会对材料提出了更为严格、苛刻的要求,复合材料由于在设计上了各组元的优点,并弥补了各自的不足,具有单一金属或合金无法比拟的优异综合性能,成为当今材料科学的研究热点之一。

复合材料一般可以分层状复合材料、颗粒增强复合材料和纤维增强复合材料,其中层状复合材料比颗粒增强、纤维增强复合材料的生产工艺简单,因而倍受欢迎,广泛应用于宇航、石油、化工、轻工、汽车、造船、电子、电力、冶金、机械、核能及日用品等领域。

AXfa0020 SiC/Wn层状复合材料力学性能与显微结构的研究

在陶瓷/金属层状复合材料中,由于金属在破坏以前,通过塑性变形吸收大量的能量,既阻碍了裂纹的失稳扩展,又能起到预报材料失效的作用。与此同时金属与陶瓷之间的性非常强,能极大地提高复合材料的可靠性,因此,对金属作为陶瓷增韧相的层状复合材料的研究有着非常诱人的前景。

用金属钨作为延性层,增韧碳化硅陶瓷,设备了SiC/W层状复合材料,并测试了其力学性能。结果表明,在保持强度不变的同时,断裂韧性提高了1倍。XRD和SEM分析发现,W和SiC发生化学反应,界面产生新相,增强了层状复合材料的界面结合,但同时降低了金属对陶瓷的增韧效果。

AXfa0021 低体积分数AL2O3颗粒增强铝基复合材料的制备工艺

颗粒增强铝基复合材料由于价格低廉,性能优越,目前已经被广泛的应用于国民生产的各个部门之中.目前制备颗粒增强铝基复合材料比较成熟的工艺有粉末冶金、搅拌铸造、挤压铸造等方法,这几种方法各有其优缺点.挤压铸造法是一种成本低,制备的材料性能优良的制备方法.但是挤压铸造法制备颗粒增强铝基复合材料的体积分数高,所得的材料难以进行挤压等塑性变形.为了使通过挤压铸造工艺得到的复合材料能够进行塑性变形,本文通过在预制块中掺入铝粉来降低预制块的体积分数,从而降低复合材料的体积分数,使之能够进行塑性成形.

AXfa0022 内应力蠕变对SicW/A1复合材料残余应力的影响

碳化硅增强铝基复合材料经历一定的温度变化后就会在材料内部产生热错配应力。当材料冷却到室温,该应力就成为了残余应力。由于该力对复合材料的微观组织结构、和性能有较大的影响,所以近年来得到了广泛的重视。最近,我们的研究表明,热处理可以改变材料的热错应力和残余应力。本文探讨了热处理工艺对SiCwA1复合材料残余应力的影响。

AXfa0023 SiCw/60601A1复合材料瞬间液相焊接接头界面形成机理

研究了SiC/6061A1复合材料瞬间液相焊接接头界面结构形成机理,在焊接过程中采用Zn-A1合金作为中间层,并辅助了刮擦、搅拌工艺。观察了Zn-A1合金/母材界面行为,从润湿、溶解角度分析了Zn-A1合金与母材之间的相互作用。

AXfa0024 热挤压SiCp/2A12复合材料才组织的性能

研究了热挤压对17vol.%SiCp/2A12复合材料型材组织和性能的影响。结果表明,热挤压加工可改善增强颗粒在基体中分布,消除热压坯料内部的孔隙,明显改善P/M法制备的SiCp/2A12复合材料型材组织和力学性能。

AXfa0025 15vol% A12O3颗粒增强6061铝基复合材料高温压缩变形行为

颗粒增强铝基复合材料具有比强度高、比模量高、导热性及尺寸稳定性好等优点,但其塑性较差,在塑性加工过程中常伴随着颗粒的断裂及表面开裂现象,严重地影响了产品的性能。有人发现在接近固液两相区进行塑性成形具有比较好的效果。本文对亚微米级A12O3颗粒增强6061铝合金复合材料进行了高温压缩变形试验研究。

AXfa0026 SiCp颗粒尺寸及含量对铝基复合材料拉伸性能的影响

对粉末冶金法制备的不同尺寸和体积含量碳化硅颗粒增强铝基复合材料的拉伸性能进行了研究。

AXfa0027 ZrCp/W复合材料的高温拉伸行为

为了提高W的高温强度,在W中加入20vol%ZiC颗粒形成ZrCp/W复合材料。在20~1400℃的拉伸试验结果表明:随温度的升高,复合材料的应力――应变曲线的非线性行为加剧,杨氏模量降低,抗拉强度和断裂应变随温度的升高而增大,强度在1200℃时出现峰值480.4MPa。复合材料在高温下的强化机理是ZrC颗粒的载荷传递和基体的位错强化。

AXfa0028 PSZ/Ni系复合材料高温氧化行为

采用粉末冶金法制备出PSZ/Ni系复合材料,对不同组成的复合材料分别在700℃、900℃空气中的等温,对材料中金属的氧化行为进行了分析。结果表明,金属Ni组元的氧化程度随陶瓷组元的增加而增加且高温时更加严重。其原因主要是一方面,PSZ具有较高的氧离子传导率,导致氧向材料内部迅速扩散;另一方面,复合材料中存在大量的金属与陶瓷的界面,大大缩短了氧的扩散途径。PSZ高的氧导率以及金属(陶瓷)是呈颗粒分散存在,使金属的表面积大大增加导致金属相氧化加剧。

1000字论文,关于废电池回收及处理的

电池产品对环境的危害主要是酸、碱等电解质溶液和重金属的污染。不同类型的电池污染物也不同。

一般来说,电池中的有害物质主要有Zn、Hg、CNi、Pb等重金属;铅蓄电池中的H2S04;各种碱性电池中的KOH和锂电池中的IiPP6电解液等。Hg及其化合物,特别是有机汞化物,具有极强的生物毒性、较快的生物富集速率和较长的脑器官生物半衰期。Cd易在动植物体内富集,影响动植物的生长,具有很强的毒性。Pb对人的胸、肾脏、生殖、心血管等器官和系统产生不良影响,表现为智力下降、肾损伤、不育及高血压等。Zn,Ni的毒性相对较小,但超过一定浓度范围时,会对人体产生不良影响和危害。废旧电池中的酸、碱解质溶液会影响土壤利水系的pH值,使土壤和水系酸性化或碱性化。电池电解质构成污染的主要组份是其中的可溶重金属,特别是铅蓄电池电解液中大量的硫酸铅和镍镉电池中的氢氧化镉。电池中的重金属离子在土壤或水体中溶解并被植物的根系吸收,当牲畜以植物为食料时,体内就积累了重金属。人类食人含重金属的粮食、蔬菜和肉类、水,顺着这条食物链,重金属就会在人体里富集。由于重金属离子在人体里难以排泄,最终会损害人的神经系统及肝脏功能。

废电池的回收利用研究

1 废电池再生利用现状

国内使用最多的工业电池为铅蓄电池,铅占蓄电池总成本50%以上,主要采用火法、湿法冶金工艺以及固相电解还原技术。外壳为塑料,可以再生,基本实现无二次污染。

小型二次电池目前使用较多的有镍镉、镍氢和锂离子电池,镍镉电池中的镉是环保严格控制的重金属元素之一,锂离子电池中的有机电解质,镍镉、镍氢电池中的碱和制造电池的辅助材料铜等重金属,都构成对环境的污染。小型二次电池目前国内的使用总量只有几亿只,且大多数体积较小,废电池利用价值较低,加上使用分散,绝大部分作生活垃圾处理,其回收存在着成本和管理方面的问题,再生利用也存在一定的技术问题。

民用干电池是目前使用量最大、也是最分散的电池产品,国内年消费80亿只。主要有锌锰和碱性锌锰两大系列,还有少量的锌银、锂电池等品种。锌锰电池、碱性锌锰电池、锌银电池一般都使用汞或汞的化合物作缓蚀剂,汞和汞的化合物是剧毒物质。废电池作为生活垃圾进行焚烧处理时,废电池中的Hg、Cd、Pb、Zn等重金属一部分在高温下排人大气,一部分成为灰渣,产生二次污染。

2 废旧干电池再生利用技术

a.人工分选回收利用技术

一般是将干电池分类后,进行简单的机械剖开,人工分离出锌皮、塑料盖、炭棒等,残存的Mn02、水锰石等混合物送人回砖窑煅烧,制成脱水的Mn02,此法简单易行,但占用劳动力较多,经济效益不大。

b. 火法回收利用技术

一般是将干电池分类、破碎后,送入回转窑,在1100~1300摄氏度的的高温下,锌及氯化锌被氧化为氧化锌随烟气排出,用旋风除尘器回收氧化锌,残存的二氧化锰及水锰石进入残渣,再进一步回收锰等物质,此法简便易行,一般的冶炼厂勿需增加设备即可回收锌。

c. 湿法回收利用技术

根据锌、二氧化锰可溶于酸的原理,将废旧干电池分类、破碎后,置于浸出槽中,加入稀硫酸(100~120g/L)进行浸出,得到硫酸锌溶液,可用电解法制得金属锌,滤渣经洗涤分离出铜帽、炭棒后,剩余物Mn02、水锰石经煅烧后制得Mn02。所用方法有焙烧一浸出法和直接浸出法。

湿法与火法相比较,具有投资少,成本低,建厂速度快,利润高、工艺灵活等优势,但不能保障有害成份完全回收。

3 废电池回收利用过程中二次污染的防治

以上的三种回收方法皆简单易行,但各有不足,存在着二次污染的问题,通过大量实验测定,我们得到了防治二次污染的可行方法。

首先将废旧干电池分类,以机械进行剖开后,分离出铜帽、锌皮,可分别回收利用。剩余的炭包物质经磁选除铁后,按1:4的固液比用水浸制1小时,取上层清液进行蒸发、结晶,沉淀物的主要成份是Mn02、MnO(OH)、乙炔黑、碳棒等物质,加入回转窑炼到600摄氏度,产生的烟气经冷凝后可得凝缩液,定期清洗即可得纯汞。同时也防止汞蒸气污染环境。在煅烧的过程中,混合物中大量的乙炔黑与碳,将Mn02还原为MnO。其反应过程如下:

2Mn0 2 +C--->2MnO+C0 2

把此煅烧物按固液比1:4加入浓度小于2mol/L硫酸溶液中,在温度80℃下浸制1小时,发生如下反应:

MnO+H 2 S0 4 --->MnS0 4 +H 2 0

得到硫酸锰盐溶液,同时,也将引人其他可溶性重金属硫酸盐。

所得的锌皮及铜等金属可直接重熔利用,氯化铵可以制肥料或提纯作为化工试剂,硫酸锰是动、植物生长的激素成份,可用于油漆油墨的吹干剂和一些有机合成反应的催化剂,此外也用于造纸、陶瓷、印染和电解锰的生产试剂。表1为锌锰干电池可回收物质的成份。

这种回收方法投资较少,采用的设备简单,易于在中小城市得以实现,从而免除了废旧电池的运输问题。

废电池回收之后的溶液,浓缩并与EDTA反应生成金属络合物,可以彻底消除二次污染。经测定,回收废电池后的溶液中所含重金属量符合国家环保标准。若要将这些金属进行分离,利用其稳定性不同可分级处理。表2为金属离子与EDTA络合稳定常数。

4 废旧电池回收过程中存在的问题及建议

①电池回收后无法处置,一般都采用堆放。堆放过程中电池有可能泄漏或有毒物质扩散。

②由于电池的种类繁多,假冒产品多,也给电池回收带来了困难,有的电池是含汞电池,有的是含镉电池,有的以氯化铵为电解液,而有的则以氯化锌为电解液,因此建议生产厂家用统一的标准标识电池的种类及内含的主要成份,以便回收利用。

③加强高性能环保型电池的开发,实现普通民用电池的无汞化。

④回收处理废电池,国家应从政策上给予扶持。

花生剥壳机的主要去壳原理和CAD图

联合花生去壳机工作原理

花生果由人工送入进料斗,先滚到滚筒里,由于纹板转动与棚条凹板间的搓力,将花生壳,仁剥离,剥离后的花生仁与壳同时经过前凹板孔落下,在通过风道时,由风离将大部分花生壳吹出机外,花生仁和一小部分未剥离的花生小果一起落入比重分选筛,经过筛选后,花生仁由分选筛面上行,通过出米嘴流入麻袋,而尚未剥离的花生小果则由筛面下行,经过出料道口流入风送机,再由风送机送如滚筒,进行二次剥壳,再经过比重分选筛分选,即可达到全部剥净.