1.风力发电机组常见故障

2.风力发电机组润滑油的主要指标有哪些?

3.上千万的风力发电机,发出来的电赚钱吗?

风力发电机组常见故障

山西风力发电机齿轮油价格_山西风力发电机齿轮油价格查询

2.风力发电机组的故障

风电机组主要分为三类①双馈式变桨变速机型,是目前大部分企业用的主流机型;②直驱永磁式变桨变速机型是近几年发展起来的,是未来风电的发展方向之一;③失速定桨定速机型是非主流机型,运行维护方便。

发电机是风电机组的核心部件,负责将旋转的机械能转化为电能,并为电气系统供电。随着风力机容量的增大,发电机的规模也在逐渐增加,使得对发电机的密封保护受到制约。发电机长期运行于变工况和电磁环境中,容易发生故障。常见的故障模式有发电机振动过大、发电机过热、轴承过热、转子/定子线圈短路、转子断条以及绝缘损坏等。据统计,在发电机的所有故障中,轴承的故障率为40%,定子的故障率为38%,转子的故障率为10%,其他故障占12%。

根据发电机的故障特点,用的诊断方法主要是基于转子/定子电流信号、电压信号以及输出功率信号等状态检测手段。POPA等借助定子电流和转子电流信号的时域分析得到其幅值信息,再通过FFT得到电流信号的谐波分量,最后通过判断谐波分量的变化实现对发电机3种模拟故障的识别。WATSON等借助连续小波变换,对输出功率信号进行分析,识别出了发电机转子偏心故障和轴承故障。DJUROVIC等研究了稳态状况下,短时傅里叶变换方法在发电机定子开环故障中的应用。通过对比发现,虽然基于定子电流和瞬时功率的诊断方法均可识别出故障,但瞬时功率信号中包含了更多的故障信息。发电机的转子偏心现象是轴承过度磨损或其他故障隐患的表现。基于输出电流、电压、功率等信号的检测方法是识别转子偏心故障的有效手段。此外,MOHANTY等针对多级齿轮箱研究通过解调异步发电机的电流信号来诊断齿轮箱故障。

另外,BENNOLrNA等在变转速下建立了基于多项式的双馈式异步发电机线性与非线性数学模型,利用故障特征分析法检测出了转子偏心故障,但是此方法也仅能判断发电机出现故障类型,而不能准确找出故障源。YANG针对同步发电机为消除变转速的影响,提出了基于转矩和主轴转速的判断准则。模拟定子绕组线圈的短路,对发电机定子绕组电流/功率信号,先用离散小波去除噪声,再使用连续小波提取特征频率,有效地识别出了故障。

3.风力发电机组叶片故障

风力发电机组安装在野外比较恶劣的环境,经常处于无人值守的状态,对其运行状态的监测尤其重要。由于环境因素,机体各部件故障率较高,叶片作为风力发电机组的主要部件之一,对其故障监测十分必要,一旦出现故障,要是不及时处理,叶片就会很快的断裂。轻则造成停机,重则烧坏机组,影响正常供电,造成不可挽回的损失.

风机叶片故障类型可分为裂纹、凹痕和破损等,叶片的振动形式主要包括摆振、挥舞振动、扭转振动和复合振动,叶片的故障信息通常依靠现场监测的震动信号进行反应。在风力发电机组故障中,突变信号和非平稳信号往往会伴随故障存在。理论上讲,当叶片出现裂纹时,振动信号中会伴随有较强的高频冲击波,并且这些离散的故障信号是可能存在任意频段内的。

故障诊断常用方法有时域分析方法和频域分析方法,时域分析方法主要研究不同时刻信号之间的关系,对于某些有明显特征的故障信号,可做出定性分析。频域分析方法通过研究波形的谐波分量来识别多种频率成分。这两种方法都具有单一性,而小波分解方法具有局部化分析的功能,在时域和频域都能快速定位。小波分解在低频部分,可以用宽的时间窗,频率分辨力则大大增强; 在高频部分则用宽的时间窗,频率分辨力则会减弱。小波分解方法的这种特性非常适合非平稳信号的故障诊断。

4.轴承故障检测

风电机组主要零部件的可靠性研究表明,在风电机组的故障中电气和控制系统故障率最高,传动系统如齿轮箱、主轴承等故障率相对较低。但进一步的研究表明电气和控制系统的故障容易排除,停机时间短,并且也不需要吊车等工具。从机组故障引发的停机时间、维护费用和是否容易造成的继发故障等角度分析,与电气和控制系统相比,机械传动系统的状态监测与预警维护更为重要。

轴承是旋转机械的关键部件,也是风电机组机械传动系统的核心部件,机械传动系统的非轴承如齿轮箱、桨叶等故障,亦多是由轴承故障引起或可在轴承的运行状态中得到反映。因此对轴承的运行状态进行实时监测,对整个机械传动系统的故障诊断和运行维护具有重要的意义。

风力发电机用轴承大致可以分为四类:变桨轴承、偏航轴承、传动系统轴承(主轴和变速箱轴承)和发电机轴承。偏航轴承安装在塔架与座舱的连接部,变桨轴承安装在每个叶片的根部与轮毂连接部位(除部分小功率兆瓦级以下的风力发电机为不可调桨叶,无变桨轴承外,每台风力发电机设备用一套偏航轴承和三套变桨轴承),主轴连接轮毂和齿轮箱,都是低速重载轴承,其中偏航和变桨轴承还是不完全旋转轴承。齿轮箱为增速箱,将叶轮的低速变为输入到发电机的高转速,二者的轴承与通常的发电机组除了在使用寿命和可靠性方面要求较高,并无其他不同。

目前的实际应用的风电轴承运行状态监测与故障识别的方法主要有基于数据集与监视控制系统(SCADA,Supervisory Control And Data Acquisition)的方法,基于振动分析、润滑油检测的方法,基于声音、红外图像的方法以及多种方法相结合等方法。

4.1 基于SCADA的方法

对于运行状态监测,风电机组与通常的发电机组相比有自己的特点:通常的火力或水利发电机机组的单机功率比风电机组大的多,机组数目少,因此状态监测点少,而一个风电场通常几十台甚至上百台风电机组,因此需要的传感器数目和集与通讯的数据量比通常的发电机组要大的多,增加了风电机组的成本和复杂性,也限制了监测系统的应用普及。如果能利用机组已有的SCADA数据,不装配额外的传感器获取机组轴承的运行状态,是最经济的方法。

研究表明发电机的机械故障可以由感应电机的终端发电机的输出反应出来,通过对感应电机的电压、电流和功率的稳定功率谱分析,对发电机的轴承、转子的断条、气隙偏向等故障进行故障监测。对于传动轴承故障诊断,类似的研究还比较少,用对电机电流解调的方法监测多级齿轮箱的故障,用定子电机电流识别齿轮箱滚动轴承的故障,由于电流的非平稳特点,引入了小波包变换的方法。在缺少振动传感器的情况下,由SCADA参数反应的传动系统轴承的运行状态不够具体。由多所大学、咨询机构和风电机组制造商合作的欧盟项目ReliaWind’在主轴承、齿轮箱和发电机轴承处安装振动传感器,通过将每十分钟的振动平均数据和SCADA数据参数相结合判断风电机组的运行状态。

4.2 基于振动的方法

基于振动的方法在旋转机械和其他发电机组的故障诊断中已广泛应用,且取得了很好的效果。风电机组的发电机和齿轮箱高速轴承可以应用现有的基于振动的故障诊断技术,只是由于风电机组的负载是非平稳的变量,常用的时域和频域FFT分析方法的性能会受影响,在信号处理的方法上需要改进。而对于主轴承和齿轮箱低速轴承,由于轴承的转速低(每分钟10—30转),计算出的故障频率低,而高通滤波器会将3Hz以下的频率过滤掉,再加上受到环境噪声的影响,使得频谱分析效果很差甚至无法进行;而在冲击故障的瞬态性问题中,由于每次故障冲击的间隔较长,使用冲击法很难准确地检测到故障信号;同时由故障点产生的冲击响应的频率较低,不能激励起较高的频率成份。以上原因限制了振动监测主轴承运行状态的效果,但可从其运行情况反映叶片的运行状态,比如识别其是否平衡,从而判断其是否遭受冰冻等事故。

4.3 基于润滑油液的方法

资料显示轴承的故障多于润滑不良有关,主要原因有 1)由于大气温度过低,润滑剂凝固,造成润滑剂无法到达需润滑部位而造成磨损;2)润滑剂散热不好,经常过热,造成润滑剂提前失效而损坏机械啮合表面;3)滤芯堵塞、油位传感器污染,润滑剂“中毒”而失效引起的故障有粘附磨损、腐蚀磨损、表面疲劳磨损、微动磨损和气蚀。这些磨损出现之后,轻则金属微粒会污染润滑剂,影响功率传递,产生噪音,造成齿面严重磨损或断裂,轴承内外圈或滚珠损坏,严重的使机组无法转动而彻底停机。目前的油液监测系统主要是振动齿轮箱的润滑油液,对于润滑的部件尚没有在线监测的方法。振动监测室风电轴承监测的趋势,但由于风电负载和风力的不稳定影响了传统的时域和频域FFT分析方法的效果,亟需引入新的非平稳信号的处理方法。

5. 风力系统的变频器的故障的分析

变频器的故障种类很多,主要有以下几类:和预先估计的结果差得很远、变频器不正确的动作行为、过电流、过电压以及电压不够等等。风力系统的变频器过电压情形指的是中间的直流回路超过电压,这会使中间直流回路滤波电容器的寿命大大减短。之所以会产生这种故障,是由于电源侧的冲击过电压。风力系统过电流故障是因为变频器负载有突然地变化,并且负载的不均匀分布,输出的还有短路这些种种缘由引起,加上逆变器过载的性能、功能极其差,因此逆变器过载故障诊断可谓是相当重要。另外,整流回路故障会因为输进的电源缺少而致使电压不够的故障发生。还有,低压穿过电网的时候变频器可能会产生故障,这也是一大研究的领域。

风力发电机组润滑油的主要指标有哪些?

1)能够对轴承齿轮起保护作用?

2)减小磨损和摩擦具有高的承载能力,防止胶合

3)吸收冲击和振动

4)防止疲劳、点蚀、微点蚀

5)冷却、防锈、抗腐蚀

上千万的风力发电机,发出来的电赚钱吗?

造价上千万的大风车,一天能发多少度电?换算成电价是赚还是赔?

一个常用型的两兆瓦风力发电机,风机成本约为720至850万,起支撑作用的塔柱则需200万元。在没有计算其他配套设施的情况下,一个大风车的造价就已经达到了上千万元。那么这么贵的风力发电机转一天能有多少度电?换算成电价是赚是赔?

一般来说,风力发电机的功率越大,适用风速越大,发电量也就越大。例如,一台五十五千瓦的风力发电机组,当风速为9.5米每秒时,一小时能发55度电,而当风速为五米每秒时,其电量就只有9.5度。至于比较大型的两兆瓦风机,在风力稳定的情况下,他转一圈大概需要3.5秒,能发电1.96度,平均一秒0.56度,这样他一个小时的发电量至少能达到2000度左右。将他换算成电价,以中国城市居民0.56到0.62元一度来算,一台两兆瓦的风机一天发电将近3万元。如一年当中有一半儿时间风力稳定,那么上千万的风机至少两年就能回本儿,更不用说风力发电机的设计寿命一般都是20年,这样看来,用风力发电还是十分赚钱的。

那么平时看起来赚得慢悠悠的风机为什么还能发这么多电呢?其关键就在于内部的增速机。简单来说,风力发电机,就是利用风能带动叶片旋转,然后经增速机等多个齿轮组将转速提升,从而驱动发电机发电,其中增速机的增速效果能达50倍左右。例如,风力发电机外面的叶片每分钟转30转,其内部的发电机齿轮每分钟就能赚1500转,由此产生大量的电能也就不奇怪了。

风力发电安全无污染,且效率高,回本快。那么为什么最先发展的欧洲国家如今却开始纷纷拆除风电设施了呢?第一个原因就是受到了气候的影响。近些年来,欧洲风速大幅下降,以至于风力发电没有动力来源,发电量也随之下降。其次,受极端天气影响,风力发出的电极不稳定,无法并入电网难储存,即使发电了也会白白浪费。再者,大量的风机运行会减慢风速,从而影响气候,造成局部干旱,且高大的风机还会对鸟类产生危害。这些原因都使得风机的弊端日益显现,对风机的抵制也逐渐兴起。不过,凡事有利就有弊,针对这些问题,只要好好解决,风力发电就仍是一种很好的清洁能源,关键就看怎么应对。